跳到主要内容

String 字段

在 Milvus 中,VARCHAR 是用于存储字符串数据的数据类型。当您定义 VARCHAR 字段时,有两个必需参数:

  • datatype 设置为 DataType.VARCHAR

  • 指定 max_length,定义 VARCHAR 字段可以存储的最大字节数。max_length 的有效范围是 1 到 65,535。

Milvus 支持 VARCHAR 字段的空值和默认值。要启用这些功能,请将 nullable 设置为 True,并将 default_value 设置为字符串值。有关详细信息,请参阅 可空值与默认值

添加 VARCHAR 字段

要在 Milvus 中存储字符串数据,请在您的 collection schema 中定义一个 VARCHAR 字段。以下是定义包含两个 VARCHAR 字段的 collection schema 示例:

  • varchar_field1:存储多达 100 字节,允许空值,默认值为 "Unknown"

  • varchar_field2:存储多达 200 字节,允许空值,但没有默认值。

如果在定义 schema 时设置 enable_dynamic_fields=True,Milvus 允许您插入事先未定义的标量字段。但是,这可能会增加查询和管理的复杂性,可能影响性能。有关更多信息,请参阅 Dynamic Field

# Import necessary libraries
from pymilvus import MilvusClient, DataType

# Define server address
SERVER_ADDR = "http://localhost:19530"

# Create a MilvusClient instance
client = MilvusClient(uri=SERVER_ADDR)

# Define the collection schema
schema = client.create_schema(
auto_id=False,
enable_dynamic_fields=True,
)

# Add `varchar_field1` that supports null values with default value "Unknown"
schema.add_field(field_name="varchar_field1", datatype=DataType.VARCHAR, max_length=100, nullable=True, default_value="Unknown")
# Add `varchar_field2` that supports null values without default value
schema.add_field(field_name="varchar_field2", datatype=DataType.VARCHAR, max_length=200, nullable=True)
schema.add_field(field_name="pk", datatype=DataType.INT64, is_primary=True)
schema.add_field(field_name="embedding", datatype=DataType.FLOAT_VECTOR, dim=3)
import io.milvus.v2.client.ConnectConfig;
import io.milvus.v2.client.MilvusClientV2;

import io.milvus.v2.common.DataType;
import io.milvus.v2.service.collection.request.AddFieldReq;
import io.milvus.v2.service.collection.request.CreateCollectionReq;

MilvusClientV2 client = new MilvusClientV2(ConnectConfig.builder()
.uri("http://localhost:19530")
.build());

CreateCollectionReq.CollectionSchema schema = client.createSchema();
schema.setEnableDynamicField(true);

schema.addField(AddFieldReq.builder()
.fieldName("varchar_field1")
.dataType(DataType.VarChar)
.maxLength(100)
.isNullable(true)
.defaultValue("Unknown")
.build());

schema.addField(AddFieldReq.builder()
.fieldName("varchar_field2")
.dataType(DataType.VarChar)
.maxLength(200)
.isNullable(true)
.build());

schema.addField(AddFieldReq.builder()
.fieldName("pk")
.dataType(DataType.Int64)
.isPrimaryKey(true)
.build());

schema.addField(AddFieldReq.builder()
.fieldName("embedding")
.dataType(DataType.FloatVector)
.dimension(3)
.build());
import { MilvusClient, DataType } from "@zilliz/milvus2-sdk-node";

const client = new MilvusClient({
address: `http://localhost:19530`
});

const schema = [
{
name: "metadata",
data_type: DataType.JSON,
},
{
name: "pk",
data_type: DataType.Int64,
is_primary_key: true,
},
{
name: "varchar_field2",
data_type: DataType.VarChar,
max_length: 200,
},
{
name: "varchar_field1",
data_type: DataType.VarChar,
max_length: 100,
},
];
import (
"context"
"fmt"

"github.com/milvus-io/milvus/client/v2/column"
"github.com/milvus-io/milvus/client/v2/entity"
"github.com/milvus-io/milvus/client/v2/index"
"github.com/milvus-io/milvus/client/v2/milvusclient"
)

ctx, cancel := context.WithCancel(context.Background())
defer cancel()

milvusAddr := "localhost:19530"

client, err := milvusclient.New(ctx, &milvusclient.ClientConfig{
Address: milvusAddr,
})
if err != nil {
fmt.Println(err.Error())
// handle error
}
defer client.Close(ctx)

schema := entity.NewSchema()
schema.WithField(entity.NewField().
WithName("pk").
WithDataType(entity.FieldTypeInt64).
WithIsPrimaryKey(true),
).WithField(entity.NewField().
WithName("embedding").
WithDataType(entity.FieldTypeFloatVector).
WithDim(3),
).WithField(entity.NewField().
WithName("varchar_field1").
WithDataType(entity.FieldTypeVarChar).
WithMaxLength(100).
WithNullable(true).
WithDefaultValueString("Unknown"),
).WithField(entity.NewField().
WithName("varchar_field2").
WithDataType(entity.FieldTypeVarChar).
WithMaxLength(200).
WithNullable(true),
)
export varcharField1='{
"fieldName": "varchar_field1",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 100
},
"nullable": true
}'

export varcharField2='{
"fieldName": "varchar_field2",
"dataType": "VarChar",
"elementTypeParams": {
"max_length": 200
},
"nullable": true
}'

export primaryField='{
"fieldName": "pk",
"dataType": "Int64",
"isPrimary": true
}'

export vectorField='{
"fieldName": "embedding",
"dataType": "FloatVector",
"elementTypeParams": {
"dim": 3
}
}'

export schema="{
\"autoID\": false,
\"fields\": [
$varcharField1,
$varcharField2,
$primaryField,
$vectorField
]
}"

设置索引参数

索引有助于提高搜索和查询性能。在 Milvus 中,向量字段的索引是必需的,但标量字段的索引是可选的。

以下示例在向量字段 embedding 和标量字段 varchar_field1 上创建索引,两者都使用 AUTOINDEX 索引类型。使用此类型,Milvus 会根据数据类型自动选择最合适的索引。您也可以为每个字段自定义索引类型和参数。有关详细信息,请参阅 Index 详解

# Set index params

index_params = client.prepare_index_params()

# Index `varchar_field1` with AUTOINDEX
index_params.add_index(
field_name="varchar_field1",
index_type="AUTOINDEX",
index_name="varchar_index"
)

# Index `embedding` with AUTOINDEX and specify metric_type
index_params.add_index(
field_name="embedding",
index_type="AUTOINDEX", # Use automatic indexing to simplify complex index settings
metric_type="COSINE" # Specify similarity metric type, options include L2, COSINE, or IP
)
import io.milvus.v2.common.IndexParam;
import java.util.*;

List<IndexParam> indexes = new ArrayList<>();
indexes.add(IndexParam.builder()
.fieldName("varchar_field1")
.indexName("varchar_index")
.indexType(IndexParam.IndexType.AUTOINDEX)
.build());

indexes.add(IndexParam.builder()
.fieldName("embedding")
.indexType(IndexParam.IndexType.AUTOINDEX)
.metricType(IndexParam.MetricType.COSINE)
.build());
indexOption1 := milvusclient.NewCreateIndexOption("my_collection", "embedding",
index.NewAutoIndex(index.MetricType(entity.IP)))
indexOption2 := milvusclient.NewCreateIndexOption("my_collection", "varchar_field1",
index.NewInvertedIndex())
const indexParams = [{
index_name: 'varchar_index',
field_name: 'varchar_field1',
index_type: IndexType.AUTOINDEX,
)];

indexParams.push({
index_name: 'embedding_index',
field_name: 'embedding',
metric_type: MetricType.COSINE,
index_type: IndexType.AUTOINDEX,
});
export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
}
]'

export indexParams='[
{
"fieldName": "varchar_field1",
"indexName": "varchar_index",
"indexType": "AUTOINDEX"
},
{
"fieldName": "embedding",
"metricType": "COSINE",
"indexType": "AUTOINDEX"
}
]'

创建 Collection

定义 schema 和索引后,创建包含字符串字段的 collection。

# Create Collection
client.create_collection(
collection_name="my_collection",
schema=schema,
index_params=index_params
)
CreateCollectionReq requestCreate = CreateCollectionReq.builder()
.collectionName("my_collection")
.collectionSchema(schema)
.indexParams(indexes)
.build();
client.createCollection(requestCreate);
err = client.CreateCollection(ctx,
milvusclient.NewCreateCollectionOption("my_collection", schema).
WithIndexOptions(indexOption1, indexOption2))
if err != nil {
fmt.Println(err.Error())
// handle error
}
await client.create_collection({
collection_name: "my_collection",
schema: schema,
index_params: index_params
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/collections/create" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d "{
\"collectionName\": \"my_collection\",
\"schema\": $schema,
\"indexParams\": $indexParams
}"
## {"code":0,"data":{}}

插入数据

创建 collection 后,插入符合 schema 的实体。

# Sample data
data = [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "pk": 2, "embedding": [0.4, 0.5, 0.6]}, # varchar_field2 field is missing, which should be NULL
{"varchar_field1": None, "varchar_field2": None, "pk": 3, "embedding": [0.2, 0.3, 0.1]}, # `varchar_field1` should default to `Unknown`, `varchar_field2` is NULL
{"varchar_field1": "Product C", "varchar_field2": None, "pk": 4, "embedding": [0.5, 0.7, 0.2]}, # `varchar_field2` is NULL
{"varchar_field1": None, "varchar_field2": "Exclusive deal", "pk": 5, "embedding": [0.6, 0.4, 0.8]}, # `varchar_field1` should default to `Unknown`
{"varchar_field1": "Unknown", "varchar_field2": None, "pk": 6, "embedding": [0.8, 0.5, 0.3]}, # `varchar_field2` is NULL
{"varchar_field1": "", "varchar_field2": "Best seller", "pk": 7, "embedding": [0.8, 0.5, 0.3]}, # Empty string is not treated as NULL
]

# Insert data
client.insert(
collection_name="my_collection",
data=data
)
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import io.milvus.v2.service.vector.request.InsertReq;
import io.milvus.v2.service.vector.response.InsertResp;

List<JsonObject> rows = new ArrayList<>();
Gson gson = new Gson();
rows.add(gson.fromJson("{\"varchar_field1\": \"Product A\", \"varchar_field2\": \"High quality product\", \"pk\": 1, \"embedding\": [0.1, 0.2, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product B\", \"pk\": 2, \"embedding\": [0.4, 0.5, 0.6]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": null, \"varchar_field2\": null, \"pk\": 3, \"embedding\": [0.2, 0.3, 0.1]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Product C\", \"varchar_field2\": null, \"pk\": 4, \"embedding\": [0.5, 0.7, 0.2]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": null, \"varchar_field2\": \"Exclusive deal\", \"pk\": 5, \"embedding\": [0.6, 0.4, 0.8]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"Unknown\", \"varchar_field2\": null, \"pk\": 6, \"embedding\": [0.8, 0.5, 0.3]}", JsonObject.class));
rows.add(gson.fromJson("{\"varchar_field1\": \"\", \"varchar_field2\": \"Best seller\", \"pk\": 7, \"embedding\": [0.8, 0.5, 0.3]}", JsonObject.class));

InsertResp insertR = client.insert(InsertReq.builder()
.collectionName("my_collection")
.data(rows)
.build());
column1, _ := column.NewNullableColumnVarChar("varchar_field1",
[]string{"Product A", "Product B", "Product C", "Unknown", ""},
[]bool{true, true, false, true, false, true, true})
column2, _ := column.NewNullableColumnVarChar("varchar_field2",
[]string{"High quality product", "Exclusive deal", "Best seller"},
[]bool{true, false, false, false, true, false, true})

_, err = client.Insert(ctx, milvusclient.NewColumnBasedInsertOption("my_collection").
WithInt64Column("pk", []int64{1, 2, 3, 4, 5, 6, 7}).
WithFloatVectorColumn("embedding", 3, [][]float32{
{0.1, 0.2, 0.3},
{0.4, 0.5, 0.6},
{0.2, 0.3, 0.1},
{0.5, 0.7, 0.2},
{0.6, 0.4, 0.8},
{0.8, 0.5, 0.3},
{0.8, 0.5, 0.3},
}).
WithColumns(column1, column2),
)
if err != nil {
fmt.Println(err.Error())
// handle err
}
const data = [
{
varchar_field1: "Product A",
varchar_field2: "High quality product",
pk: 1,
embedding: [0.1, 0.2, 0.3],
},
{
varchar_field1: "Product B",
varchar_field2: "Affordable price",
pk: 2,
embedding: [0.4, 0.5, 0.6],
},
{
varchar_field1: "Product C",
varchar_field2: "Best seller",
pk: 3,
embedding: [0.7, 0.8, 0.9],
},
];

await client.insert({
collection_name: "my_collection",
data: data,
});

curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/insert" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
--data '{
"data": [
{"varchar_field1": "Product A", "varchar_field2": "High quality product", "pk": 1, "embedding": [0.1, 0.2, 0.3]},
{"varchar_field1": "Product B", "pk": 2, "embedding": [0.4, 0.5, 0.6]},
{"varchar_field1": null, "varchar_field2": null, "pk": 3, "embedding": [0.2, 0.3, 0.1]},
{"varchar_field1": "Product C", "varchar_field2": null, "pk": 4, "embedding": [0.5, 0.7, 0.2]},
{"varchar_field1": null, "varchar_field2": "Exclusive deal", "pk": 5, "embedding": [0.6, 0.4, 0.8]},
{"varchar_field1": "Unknown", "varchar_field2": null, "pk": 6, "embedding": [0.8, 0.5, 0.3]},
{"varchar_field1": "", "varchar_field2": "Best seller", "pk": 7, "embedding": [0.8, 0.5, 0.3]}
],
"collectionName": "my_collection"
}'

## {"code":0,"cost":0,"data":{"insertCount":3,"insertIds":[1,2,3]}}

Query with filter expressions

After inserting entities, use the query method to retrieve entities that match the specified filter expressions.

To retrieve entities where the varchar_field1 matches the string "Product A":

# Filter `varchar_field1` with value "Product A"
filter = 'varchar_field1 == "Product A"'

res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)

print(res)

# Example output:
# data: [
# "{'varchar_field1': 'Product A', 'varchar_field2': 'High quality product', 'pk': 1}"
# ]
import io.milvus.v2.service.vector.request.QueryReq;
import io.milvus.v2.service.vector.response.QueryResp;

String filter = "varchar_field1 == \"Product A\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());

System.out.println(resp.getQueryResults());

// Output
//
// [QueryResp.QueryResult(entity={varchar_field1=Product A, varchar_field2=High quality product, pk=1})]
filter := "varchar_field1 == \"Product A\""
queryResult, err := client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1").FieldData().GetScalars())
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2").FieldData().GetScalars())

// Output
//
// varchar_field1 string_data:{data:"Product A"}
// varchar_field2 string_data:{data:"High quality product"}
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field1 == "Product A"',
output_fields: ['varchar_field1', 'varchar_field2']
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field1 == \"Product A\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'
## {"code":0,"cost":0,"data":[{"pk":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}

To retrieve entities where the varchar_field2 is null:

# Filter entities where `varchar_field2` is null
filter = 'varchar_field2 is null'

res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)

print(res)

# Example output:
# data: [
# "{'varchar_field1': 'Product B', 'varchar_field2': None, 'pk': 2}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 3}",
# "{'varchar_field1': 'Product C', 'varchar_field2': None, 'pk': 4}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 6}"
# ]
String filter = "varchar_field2 is null";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());

System.out.println(resp.getQueryResults());

// Output
//
// [
// QueryResp.QueryResult(entity={varchar_field1=Product B, varchar_field2=null, pk=2}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=3}),
// QueryResp.QueryResult(entity={varchar_field1=Product C, varchar_field2=null, pk=4}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=6})
// ]
filter = "varchar_field2 is null"
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1"))
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2"))
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field2 is null',
output_fields: ['varchar_field1', 'varchar_field2']
});
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field2 is null",
"outputFields": ["varchar_field1", "varchar_field2"]
}'

To retrieve entities where varchar_field1 has the value "Unknown", use the following expression below. As the default value of varchar_field1 is "Unknown", the expected result should include entities with varchar_field1 explicitly set to "Unknown" or with varchar_field1 set to null.

# Filter entities with `varchar_field1` with value `Unknown`
filter = 'varchar_field1 == "Unknown"'

res = client.query(
collection_name="my_collection",
filter=filter,
output_fields=["varchar_field1", "varchar_field2"]
)

print(res)

# Example output:
# data: [
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 3}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': 'Exclusive deal', 'pk': 5}",
# "{'varchar_field1': 'Unknown', 'varchar_field2': None, 'pk': 6}"
# ]
String filter = "varchar_field1 == \"Unknown\"";
QueryResp resp = client.query(QueryReq.builder()
.collectionName("my_collection")
.filter(filter)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.build());

System.out.println(resp.getQueryResults());

// Output
//
// [
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=3}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=Exclusive deal, pk=5}),
// QueryResp.QueryResult(entity={varchar_field1=Unknown, varchar_field2=null, pk=6})
// ]
filter = "varchar_field1 == \"Unknown\""
queryResult, err = client.Query(ctx, milvusclient.NewQueryOption("my_collection").
WithFilter(filter).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}
fmt.Println("varchar_field1", queryResult.GetColumn("varchar_field1"))
fmt.Println("varchar_field2", queryResult.GetColumn("varchar_field2"))
// node
await client.query({
collection_name: 'my_collection',
filter: 'varchar_field1 == "Unknown"',
output_fields: ['varchar_field1', 'varchar_field2']
});
# restful
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/query" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"filter": "varchar_field1 == \"Unknown\"",
"outputFields": ["varchar_field1", "varchar_field2"]
}'

Vector search with filter expressions

In addition to basic scalar field filtering, you can combine vector similarity searches with scalar field filters. For example, the following code shows how to add a scalar field filter to a vector search:

# Search with string filtering

# Filter `varchar_field2` with value "Best seller"
filter = 'varchar_field2 == "Best seller"'

res = client.search(
collection_name="my_collection",
data=[[0.3, -0.6, 0.1]],
limit=5,
search_params={"params": {"nprobe": 10}},
output_fields=["varchar_field1", "varchar_field2"],
filter=filter
)

print(res)

# Example output:
# data: [
# "[{'id': 7, 'distance': -0.04468163847923279, 'entity': {'varchar_field1': '', 'varchar_field2': 'Best seller'}}]"
# ]
import io.milvus.v2.service.vector.request.SearchReq;
import io.milvus.v2.service.vector.response.SearchResp;

String filter = "varchar_field2 == \"Best seller\"";
SearchResp resp = client.search(SearchReq.builder()
.collectionName("my_collection")
.annsField("embedding")
.data(Collections.singletonList(new FloatVec(new float[]{0.3f, -0.6f, 0.1f})))
.topK(5)
.outputFields(Arrays.asList("varchar_field1", "varchar_field2"))
.filter(filter)
.build());

System.out.println(resp.getSearchResults());

// Output
//
// [[SearchResp.SearchResult(entity={varchar_field1=, varchar_field2=Best seller}, score=-0.04468164, id=7)]]
queryVector := []float32{0.3, -0.6, 0.1}
filter = "varchar_field2 == \"Best seller\""

annParam := index.NewCustomAnnParam()
annParam.WithExtraParam("nprobe", 10)
resultSets, err := client.Search(ctx, milvusclient.NewSearchOption(
"my_collection", // collectionName
5, // limit
[]entity.Vector{entity.FloatVector(queryVector)},
).WithANNSField("embedding").
WithFilter(filter).
WithAnnParam(annParam).
WithOutputFields("varchar_field1", "varchar_field2"))
if err != nil {
fmt.Println(err.Error())
// handle error
}

for _, resultSet := range resultSets {
fmt.Println("IDs: ", resultSet.IDs.FieldData().GetScalars())
fmt.Println("Scores: ", resultSet.Scores)
fmt.Println("varchar_field1: ", resultSet.GetColumn("varchar_field1"))
fmt.Println("varchar_field2: ", resultSet.GetColumn("varchar_field2"))
}
await client.search({
collection_name: 'my_collection',
data: [0.3, -0.6, 0.1],
limit: 5,
output_fields: ['varchar_field1', 'varchar_field2'],
filter: 'varchar_field2 == "Best seller"'
params: {
nprobe:10
}
});
curl --request POST \
--url "${CLUSTER_ENDPOINT}/v2/vectordb/entities/search" \
--header "Authorization: Bearer ${TOKEN}" \
--header "Content-Type: application/json" \
-d '{
"collectionName": "my_collection",
"data": [
[0.3, -0.6, 0.1]
],
"limit": 5,
"searchParams":{
"params":{"nprobe":10}
},
"outputFields": ["varchar_field1", "varchar_field2"],
"filter": "varchar_field2 == \"Best seller\""
}'

## {"code":0,"cost":0,"data":[{"distance":-0.2364331,"id":1,"varchar_field1":"Product A","varchar_field2":"High quality product"}]}