跳到主要内容

Whitespace

whitespace tokenizer 在单词之间有空格时将文本分割为术语。

配置

whitespace tokenizer 是内置在 Milvus 中的。要使用它,只需在 analyzer_params 内的 tokenizer 部分中指定其名称即可。

analyzer_params = {
"tokenizer": "whitespace",
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "whitespace");
const analyzer_params = {
"tokenizer": "whitespace"
};
analyzerParams = map[string]any{"tokenizer": "whitespace"}
# restful
analyzerParams='{
"tokenizer": "whitespace"
}'

The whitespace tokenizer can work in conjunction with one or more filters. For example, the following code defines an analyzer that uses the whitespace tokenizer and lowercase filter: whitespace tokenizer 可以与一个或多个 filter 结合使用。例如,以下代码定义了一个使用 whitespace tokenizer 和 lowercase filter 的 analyzer:

analyzer_params = {
"tokenizer": "whitespace",
"filter": ["lowercase"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "whitespace");
analyzerParams.put("filter", Collections.singletonList("lowercase"));
const analyzer_params = {
"tokenizer": "whitespace",
"filter": ["lowercase"]
};
analyzerParams = map[string]any{"tokenizer": "whitespace", "filter": []any{"lowercase"}}
# restful
analyzerParams='{
"tokenizer": "whitespace",
"filter": [
"lowercase"
]
}'

After defining analyzer_params, you can apply them to a VARCHAR field when defining a collection schema. This allows Milvus to process the text in that field using the specified analyzer for efficient tokenization and filtering. For details, refer to Example use. 定义 analyzer_params 后,您可以在定义 collection schema 时将其应用于 VARCHAR field。这允许 Milvus 使用指定的 analyzer 处理该 field 中的文本,以实现高效的分词和过滤。有关详细信息,请参阅 示例使用

示例

在将 analyzer 配置应用到您的 collection schema 之前,使用 run_analyzer 方法验证其行为。

Analyzer 配置

analyzer_params = {
"tokenizer": "whitespace",
"filter": ["lowercase"]
}
Map<String, Object> analyzerParams = new HashMap<>();
analyzerParams.put("tokenizer", "whitespace");
analyzerParams.put("filter", Collections.singletonList("lowercase"));
// javascript
analyzerParams = map[string]any{"tokenizer": "whitespace", "filter": []any{"lowercase"}}
# restful

使用 run_analyzer 验证

# Sample text to analyze
sample_text = "The Milvus vector database is built for scale!"

# Run the standard analyzer with the defined configuration
result = MilvusClient.run_analyzer(sample_text, analyzer_params)
print(result)
// java
// javascript
// go
# restful

预期输出

['Milvus', 'is', 'a', 'high-performance,', 'scalable', 'vector', 'database.']